Strategies for Finding Disease Genes

Dennis Drayna NIDCD Human Genetics =

Study of Human Variation

Determining whether variation is genetic

- twin studies
- adoption studies
- segregation analysis

Simple Traits <----- > Complex Traits rare, Mendelian common diseases

penetrance
expressivity
multiple genes
gene-gene interaction
environment

Linkage studies

• Linkage- observance of co-inheritance of 2 traits when passed down from parent to offspring

violations of Mendel's 2nd law

Linkage

ABO and Nail-Patella Syndrome

• percentage of co-inheritance corresponds to genetic (and physical) distance – a map!

A Genetic Map

Principle of positional cloning

- If you know the location of a gene which specifies a trait, you can identify that gene, without knowledge of the biochemistry, physiology, or pathology of the gene product
- Since we know the location of our genetic markers, observation of linkage tells the location of the gene

Genetic markers DNA-based makers

- simple sequence repeats
 - CA's, tri-and tetra-nucleotide repeats
 - differences based on length across repeat
 - gttatcttagggctcagt<u>cacacacacacacacacacacacacacacacat</u>tccaggtattggatcaact
 - single copy

variable repeat

single copy

- SNP's single nucleotide polymorphisms
 - ggattacctgaccctgAccgcttaatcattgatt
 - ggattacctgaccctgGccgcttaatcattgatt

Simple sequence repeats

• Use PCR, followed by gel electrophoresis, typically on automated (ABI) machine

highly polymorphic

frequently informative

Single nucleotide polymorphisms SNP's

- Use PCR, followed by other, non-gel analysis method
 - DNA chips, many other methods
- highly automatable
- Only 2 alleles at each locus
- Need more of them to make up for lower informativity

Doing a linkage study

- Assemble families
 - 10¹ 10³ individuals required
 - DNA blood is traditional, other sources gaining popularity
 - Ongoing contact with families is essential
- Genome-wide search
 - 375 simple repeat markers for a first pass
 - A lot more SNP's

Doing a linkage study Statistical Analysis

- LOD score method
 - used for Mendelian traits
 - Logarithm of the odds that: markers are linked, at a particular distance, divided by the odds that they're linked at 50% co-inheritance, i.e., they're not linked at all

LOD score table θ

	0.00	0.01	0.05	0.10	0.20	0.30	0.40
family 1	- ∞	0.91	1.33	1.87	1.60	1.10	0.88
family 2	2.33	2.18	1.99	1.66	1.41	1.22	1.04
total	- ∞	3.09	3.29	3.53	3.01	2.32	1.92

LOD scores

- Historically defined
 - LOD of 1 = suggestive
 - LOD of 2 = probable
 - LOD of 3 = proof

Linkage Analysis

- Computerized statistical packages
 - LIPED
 - LINKAGE
 - MAPMAKER
 - FASTLINK

Non-parametric analyses

- Used for non-Mendelian traits
- Affected sib-pair, affected relative pair methods and allele sharing expectations
- Transmission disequilibrium test
- Support measured in p values, t values, other units
- GENEHUNTER

Allele sharing expectations

What does the observation of linkage tell you?

- A gene contributing to the trait lies somewhere in the vicinity of the markers that show linkage
- Highest LOD score is never the marker that's closest to the gene
- Taken a 5 order of magnitude problem down to a 2 order of magnitude problem

Narrowing the location of the disease gene

- Assembling a physical map of the region
 - BAC contig
- Radiation Hybrid (RH) mapping
- Construction of haplotypes and observation of cross-over events in families
 - Mendelian traits

Using haplotypes to find cross-overs

• Haplotypes - the arrangement of alleles on the 2 chromosomes within an individual

 Allow precise estimates of the region of the chromosome which segregates with the disease gene in families

Using Haplotypes to find crossovers

Narrowing the location of the disease gene

 Using specialized populations to obtain more meioses

- Founder effects, genetic isolates, inbreeding

Allele-sharing and linkage disequilibrium

Candidate genes

Biological plausibility has not been a good predictor

Failures frequently unreported

– many disease genes turn out to be a surprise

Candidate genes

• Enumeration of all genes in the region

- now done electronically
 - NCBI

Candidate genes

- Evaluation involves comparison of DNA sequence between affected and unaffected individuals
- Genomic DNA sequence required
 - Mutations can exist in coding sequence, in introns, especially near splice sites, in promoter, in 3' untranslated region

The Big Shortcut

- Large-scale rearrangements
- In rare patients, chromosome rearrangements can be observed in light microscope analysis -often associated with syndromic presentation
- Can exist at a scale larger than the entire gene, but too small to be visible in the light microscope

How do you know you've identified the real disease gene?

• Observation of different mutations in the same gene in different families

Expression patterns

Functional studies

Association studies

- Measure association of a marker with a disease in a population of unrelated affected individuals
- For markers not in genes, requires linkage disequilibrium currently a risky strategy
- For markers that represent functional changes in genes (e.g. cSNP's), optimism is high

References - Textbooks

- T. Strachen and A.P. Read *Human Molecular Genetics* 2, Wiley-Liss, New York 1999 ISBN 0-471-33061-2
- J. Terwilliger and J. Ott *Handbook of Human Genetic Linkage* Johns Hopkins University Press, Baltimore 1994

 ISBN 0-8018-4803-2
- J. L. Haines and M.A. Pericak-Vance, eds. *Approaches to Gene Mapping in Complex Human Disease*, Wiley-Liss, New York, 1998 ISBN 0-471-17195-6

References - URL's I.

- Online Mendelian Inheritance in Man http://www.ncbi.nlm.nih.gov/Omim/
 - Human inherited diseases, medical genetics
- Genome Data Base www.gdb.org
 - Genetic maps, polymorphic marker information, genetic disease information
- Marshfield Center for Medical Genetics http://research.marshfieldclinic.org/genetics/
 - Genetic maps, marker screening sets, genotyping service
- Genethon http://www.genethon.fr/genethon_en.html
 - Genetic maps, polymorphic maker information

References - URL's II.

- Center for Inherited Disease Research http://www.cidr.jhmi.edu/
 - Genotyping service, data analysis
- Laboratory of Statistical Genetics at Rockefeller University http://linkage.rockefeller.edu/
 - Linkage analysis programs, training courses, linkage bibliography and resources
- Single Nucleotide Polymorphisms
 - http://snp.csl.org
 - http://www.ncbi.nlm.nih.gov/SNP/
 - Polymorphisms, locations, PCR primer sequences, allele frequencies, contacts to submitters
- The Golden Path http://genome.cse.ucsc.edu/
 - Assembled human DNA sequence

References - URL's III.

- National Center for Biotechnology Information
- Genome Central http://www.ncbi.nlm.nih.gov/genome/guide/central.html
- Genome sequence http://www.ncbi.nlm.nih.gov/genome/seq/HsHome.shtml
- Gene Map 99 http://ncbi.nlm.nih.gov/genemap99 RH mapping
- dbEST http://www.ncbi.nlm.nih.gov/dbEST/
- UniGene http://ncbi.nlm.nih.gov/UniGene/
- Genome maps http://genome.wustl.edu/gsc/human/Mapping/
- Ensembl http://www.ensembl.org
- Oak Ridge Genome Channel http://compbio.ornl.gov/tools/channel/